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Abstract

A direct numerical simulation method based on the Maxwell stress tensor and a fictitious domain method has been
developed to solve flows with suspended paramagnetic particles. The numerical scheme enables us to take into account
both hydrodynamic and magnetic interactions between particles in a fully coupled manner. Particles are assumed to be
non-Brownian with negligible inertia. Rigid body motions of particles in 2D are described by a rigid-ring description
implemented by Lagrange multipliers. The magnetic force, acting on the particles due to magnetic fields, is represented
by the divergence of the Maxwell stress tensor, which acts as a body force added to the momentum balance equation.
Focusing on two-dimensional problems, we solve a single-particle problem for verification. With the magnetic force work-
ing on the particle, the proper number of collocation points is found to be two points per element. The convergence with
mesh refinement is verified by comparing results from regular mesh problems with those from a boundary-fitted mesh
problem as references. We apply the developed method to two application problems: two-particle interaction in a uniform
magnetic field and the motion of a magnetic chain in a rotating field, demonstrating the capability of the method to tackle
general problems. In the motion of a magnetic chain, especially, the deformation pattern at break-up is similar to the
experimentally observed one. The present formulation can be extended to three-dimensional and viscoelastic flow
problems.
� 2008 Elsevier Inc. All rights reserved.

PACS: 02.70.Dh; 47.50.Gj; 47.61.�k; 83.80.Gv

Keywords: Magnetic particle; Maxwell stress tensor; Fictitious domain method; Finite element method; Rotating magnetic field
1. Introduction

There are many areas that involve active manipulation of suspensions of micron-sized magnetic particles.
Magneto-rheological (MR) fluids consist of magnetizable particles suspended in a non-magnetic medium.
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Upon applying a magnetic field the particles align into chains or clusters so that the MR fluid exhibits rigid
behavior with a yield stress. It is this field-dependent rheological structure formation and yield stress, com-
bined with their rapid response to the application of a magnetic field, that makes MR fluids an attractive
technology for a number of challenging applications [1,2]. Since the appearance of the concept of micro-
total-analysis systems [3], recently, suspensions of paramagnetic particles are employed in a newly emerging
field: microfluidics for chemical or bio-medical applications [4,5]. The magnetic manipulation of the particles
provides an additional degree of freedom to the system compared with normal microfluidic or biological
systems [4]. In these microfluidic systems, small magnetic particles are used as mobile substrates for bio-
assays to be transported to the desired position [6,7] or as stirring agents in order to achieve enhanced mix-
ing [8,9].

When exposed to an externally applied magnetic field, the magnetically polarizable particles acquire
dipole moments and the induced moments interacting with each other lead to the formation of chain-like
structures or clusters of particles aligned with the field direction [10–12]. The motion of an individual par-
ticle and the dynamics behind the formation of magneto-rheological structures (MRS) are key issues from a
fundamental point of view. To date, many numerical studies have been reported to understand the dynamics
of the particles influenced by magnetic fields. Most of them focus on the dynamics of the particles and the
formation of magneto-rheological structures using a numerical method based on the Stokes drag law and
the dipole–dipole interaction model, neglecting hydrodynamic interactions between particles and higher-
order mutual magnetic interactions between closely spaced particles. Flow characteristics induced by the
particle motion and the particle motion affected by the flow received less attention due to the lack of a
proper numerical model to take into account both hydrodynamic and magnetic interactions in a fully cou-
pled manner.

In this work, we introduce a direct numerical simulation scheme to fully couple both hydrodynamic
and magnetic interactions in flows with suspended magnetic particles in an externally applied magnetic
field. Particles are assumed to be non-Brownian and inertialess and fluid flow is governed by the Stokes
equation neglecting inertia. We make use of a toolkit for the finite element method [13] as a base on
which our numerical implementation is developed. The flow problem with rigid particles is solved using
a fictitious domain [14] and the finite element method to take into account the hydrodynamic interac-
tions. The forces working on the particles due to an external magnetic field and magnetic interactions
between the particles are implemented through the Maxwell stress tensor formulation. In this formula-
tion, the magnetic force, which is added as a body force to the momentum equations, is represented
by the divergence of the Maxwell stress tensor [15,16] evaluated from the magnetic field intensity
obtained as a solution of Maxwell’s equations. The dipole moment method used by other authors is
quite effective if the length scale of the field non-uniformity is much larger than the particle size
[17,18]. However, this assumption may be violated in microfluidic applications because practical sources
of magnetic fields, for example permanent magnets or current-carrying wires, become smaller with min-
iaturization, leading to the decrease in the length scale of the field non-uniformity as well. Therefore, in
applications with the particle size comparable to the field non-uniformity due to closely spaced particles
or particles close to a magnetic source, the present approach is more favorable than that based on the
dipole moment method. From the viewpoint of implementation, moreover, the present scheme has sev-
eral advantages: (1) easy implementation in a code based on the finite element method, regardless of the
shape of particles; (2) easy treatment of inhomogeneous magnetic permeability, possibly also depending
on the magnetic field intensity; and (3) direct simulation of particulate flows with both hydrodynamic
and magnetic interactions.

We focus on simulations of two-dimensional circular particles suspended in a non-magnetic Newtonian
fluid in order to introduce the numerical scheme and study its feasibility for extension to much more compu-
tationally intensive three-dimensional problems. The present paper is organized as follows. We first introduce
the problem we wish to solve. Next we address the essence of the finite element formulations for the governing
equations: Maxwell’s equations and Stokes equations. Then we show the validity of our formulation using a
single-particle problem. Finally we solve two example problems involving magnetic particles subjected to
either a uniform or a rotating magnetic field, as applications to demonstrate the capability of our numerical
scheme.
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2. Modeling

2.1. Problem definition

The problem we wish to solve is, as schematically illustrated in Fig. 1, the motion of paramagnetic particles and
fluid flow in an externally applied magnetic field taking into account both hydrodynamic and magnetic interac-
tions in a fully coupled manner. Paramagnetic particles are magnetically neutral in the absence of a magnetic field,
but magnetized under the influence of an external magnetic field. We neglect the effect of magnetic saturation,
which is an approximation for relatively small field strengths. The particles are assumed to be non-Brownian
and inertialess, but they interact with the surrounding fluid and other particles both hydrodynamically and mag-
netically. The constant magnetic permeabilities of the particles and the fluid are lp and l0, respectively, where
lp > l0. The magnetic permeability of the non-magnetic fluid is the same as that in vacuum. Here we assume that
the magnetic field is generated by static current (or very slowly changing current) so that we may solve magneto-
statics which is a special case of Maxwell’s equations in the absence of an electric field and electrostatic charges
[15,19]. The fluid is Newtonian with the viscosity g. The fluid flow is assumed to be governed by the viscous force
and the magnetic actuation acting on the particles, neglecting the effect of inertia.

A typical computational domain consists of particles all with the same radius a suspended in a cavity filled
with a non-magnetic Newtonian fluid. We impose a magnetic flux density B0 applied externally as an essential
boundary condition at the cavity boundary, which will be discussed in the next section. Here the magnetic flux
density at the cavity boundary is the only driving force to actuate the particles and thereby induce fluid flow.
Particles are denoted by P iðtÞ ði ¼ 1; . . . ;NÞ, where N is the number of particles in the cavity. We define
P ðtÞ ¼

SN
i¼1P iðtÞ as a collective region occupied by the particles at time t. The fluid domain is denoted by

X n PðtÞ at time t with X being the entire region. In the following sections, the governing equations and bound-
ary conditions for both magnetic and flow problems will be discussed in detail.

2.2. Magnetostatic problem

2.2.1. Governing equations
The problem of electromagnetic analysis is actually a problem of solving a set of Maxwell’s equations sub-

jected to given boundary conditions [19]. In the case of a magnetostatic field, the governing equations can be
written as
Fig. 1.
externa
applied
r�H ¼ J; ð1Þ
r � B ¼ 0; ð2Þ
where H is the magnetic field intensity, J the current density, and B the magnetic flux density. In order to solve
the two Maxwell’s equations for magnetostatics, we need a constitutive equation relating the two field quan-
tities, B and H. The constitutive equation describing macroscopic properties of the medium being considered is
B ¼ lH ; ð3Þ
0B Ω
wΓ

iP

2a

Magnetic particles with the permeability lp suspended in a non-magnetic fluid with the permeability l0 under the influence of an
lly applied magnetic field. The surrounding medium is a Newtonian fluid with the viscosity g. Here B0 is the magnetic flux density
externally.
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where l denotes the magnetic permeability of a linear isotropic medium. In general, to solve the magnetostatic
Maxwell’s equations, the first-order partial differential equations are converted into second-order partial dif-
ferential equations involving only one field variable called the magnetic vector potential A. The magnetic flux
density can be represented by the curl of A,
B ¼ r� A; ð4Þ

which satisfies Eq. (2). Thus, the magnetostatic field governed by Eqs. (1) and (2) may be represented by the
second-order partial differential equations,
r� 1

l
r� A

� �
¼ J: ð5Þ
To uniquely define the vector potential, in addition to Eq. (5), a gauge condition for A is required [19]. The
particular choice used in this study is Coulomb gauge, given by r � A ¼ 0.

The magnetic permeability l, which is discontinuous at fluid–particle interfaces, is evaluated by the follow-
ing equations, which is similar to the interpolation of material properties in the level set method [20],
lð/Þ ¼
lp if / 6 0 ðparticle domainÞ;
l0 otherwise ðfluid domainÞ;

�
ð6Þ
where / is the signed distance function from a spatial position x to the particle boundaries oP iðtÞ defined by
/ðxÞ ¼ minfjx� Xij � Rig ði ¼ 1; � � � ;NÞ; ð7Þ

where Xi is the position vector of the center of the ith particle, Ri the radius of the ith particle, and N the num-
ber of particles.

For two-dimensional cases, assuming a vertical current, J ¼ Jez, that is independent of the coordinate z, the
magnetic vector potential has only a z-component, i.e. A ¼ ð0; 0;AÞ, which satisfies the vector potential
equation
r� 1

lr

r� Aez

� �
¼ l0Jez; ð8Þ
where lr is the relative permeability, lr ¼ l=l0, with l0 being the permeability in vacuum. In the Cartesian
coordinate system, the z-component of above equation becomes
� o

ox
1

lr

oA
ox

� �
� o

oy
1

lr

oA
oy

� �
¼ l0J ; ð9Þ
which has exactly the same form as a scalar diffusion equation with the diffusivity 1=lr and the source term
l0J . Eq. (9) can be easily solved by the standard finite element method. Note that, since A is defined on
xy-plane, i.e. A ¼ Aðx; yÞ, Coulomb gauge condition, r � A ¼ 0, is automatically satisfied.

Once the magnetic potential A is found, the components of the magnetic flux density, B ¼ ðBx;ByÞ, are com-
puted by
Bx ¼
oA
oy
; By ¼ �

oA
ox
: ð10Þ
2.2.2. Continuity conditions at the interface

At a current-free interface between two media, for example a fluid–particle interface having different mag-
netic permeabilities, the fields should satisfy two continuity equations, given by
n � ðBf � BpÞ ¼ 0; ð11Þ
n� ðH f �HpÞ ¼ 0; ð12Þ
where n is the unit vector normal to the interface pointing from the particle domain to the fluid. The two equa-
tions represent the continuity of the normal component of B and the tangential component of H at the inter-
face. In Eqs. (11) and (12), the variables with the subscript ‘f’ and ‘p’ represent those variables evaluated from



T.G. Kang et al. / Journal of Computational Physics 227 (2008) 4441–4458 4445
the fluid domain and the particle domain, respectively. In terms of the magnetic potential A, the continuity
conditions are given by
Af ¼ Ap; ð13Þ
1

lrf

oAf

on
¼ 1

lrp

oAp

on
; ð14Þ
where o
on ¼ n � r. In Section 2.2.5, we will show that the continuity equations, Eqs. (13) and (14), satisfy the

original continuity equations, Eqs. (11) and (12).

2.2.3. Boundary conditions

As already mentioned, the magnetic flux density is given at a cavity boundary as an essential boundary con-
dition. Therefore, the values of the magnetic potential A may be explicitly defined at the boundary via a
Dirichlet boundary condition. In the two-dimensional Cartesian coordinate system, the form of A at the
boundary is specified by the parameters A0;A1, and A2 as follows:
A ¼ A0 þ A1xþ A2y; ð15Þ

where A0 is an arbitrary constant (here defined to be zero, A0 ¼ 0). From Eq. (10), the two coefficients, A1 and
A2, are given by A1 ¼ �B0y and A2 ¼ B0x for the prescribed external flux density B0 ¼ ðB0x;B0yÞ.

2.2.4. Maxwell stress tensor

In order to describe the particle motion and the flow influenced by a magnetic field, one needs to have a
relation between the magnetic field and the force acting on the particles due to the field. We employ the Max-
well stress tensor for this purpose. The Maxwell stress tensor Tm due to the magnetic field is defined by
Tm ¼ l HH � 1

2
H 2I

� �
; ð16Þ
where I is the identity tensor and H 2 ¼ H �H . The body force f m experienced by materials in the magnetic
field is given by the divergence of Tm, f m ¼ r � Tm [15]. The force f m may be regarded as a force density
per volume (per area in 2D) exerted on the material body in the presence of the magnetic field, which contrib-
utes to the momentum balance equation as an external force. For example, the momentum balance equation
under the influence of the magnetic field is represented by
q
ou

ot
þ u � ru

� �
¼ r � rþr � Tm; ð17Þ
where q denotes the density, u the velocity vector, t the time, and r the Cauchy stress tensor.
2.2.5. Remarks

(1) The derivatives oA
os and 1

l
oA
os at the boundary can be introduced as follows:
oA
os
¼ s � rA ¼ sx

oA
ox
þ sy

oA
oy

¼ ð�nyÞð�ByÞ þ nxBx ðsx ¼ �ny ; sy ¼ nxÞ ð18Þ
¼ B � n ðcontinuous at the interfaceÞ;

1

l
oA
os
¼ H � n ðdiscontinuous at the interfaceÞ; ð19Þ

where n and s are the unit outward normal vector and the unit tangential vector at the interface, respec-
tively. Therefore, oA

os and 1
l

oA
os are the normal components of B and H at the interface, respectively. From

Eqs. (13) and (18), B � n is continuous at the boundary, which proves that Eq. (11) is fulfilled.
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(2) The derivatives oA
on and 1

l
oA
on at the boundary can be introduced as follows:
oA
on
¼ n � rA ¼ nx

oA
ox
þ ny

oA
oy

¼ syð�ByÞ � sxBx ð20Þ
¼ �B � s ðdiscontinuous at the interfaceÞ;

1

l
oA
on
¼ �H � s ðcontinuous at the interfaceÞ: ð21Þ

Therefore, oA
on and 1

l
oA
on are the tangential components of B and H at the interface with negative signs,

respectively. From Eqs. (14) and (21), H � s is continuous at the interface, thus Eq. (12) holds.

(3) The continuity of the tangential component of H, which is represented by the continuity of flux in the

diffusion equation of the magnetic potential A, Eq. (14), is weakly satisfied in the finite element
formulation.

(4) Note that, for linear isotropic homogeneous materials, the magnetic force f m is represented by [16]
f m ¼ r � Tm ¼ J � B � H 2

2
rl: ð22Þ

Therefore, without a free current density J, the magnetic force f m acting on a medium with a constant
magnetic permeability l is zero. The forcing on a particle will therefore be singular due to the jump in the
value of l and will only act at the boundary of the particle.
2.3. Flow problem

2.3.1. Governing equations

We assume that the fluid flow is governed by the Stokes equations and the two-dimensional circular par-
ticles are assumed to be force-free, torque-free, and inertialess. The set of equations describing fluid flow in
X n P ðtÞ is given by
� $ � r ¼ r � Tm in X n P ðtÞ; ð23Þ
$ � u ¼ 0 in X n PðtÞ; ð24Þ
r ¼ �pI þ 2gD in X n P ðtÞ; ð25Þ
u ¼ U i þ xi � ðx� X iÞ on oP iðtÞ ði ¼ 1; . . . ;NÞ; ð26Þ
u ¼ 0 on Cw; ð27Þ
where r is the Cauchy stress tensor, Tm the Maxwell stress tensor, u the velocity, p the pressure, g the viscosity,
D the rate-of-deformation tensor, U i the translational velocity of the ith particle, xi the angular velocity of the
ith particle, x the position vector of a point on the ith particle boundary, and X i the position vector of the
center of the ith particle. Eqs. (23)–(25) are the momentum balance equation, the continuity equation and
the constitutive relation for the fluid domain, respectively. Eqs. (26) and (27) are the constraints for rigid body
motion of the particles and the essential boundary condition at the solid wall to solve the set of governing
equations, respectively.

As for the particle domain PðtÞ, we employ the rigid-ring description of Hwang et al. [21] where the fluid
also fills the particles and the rigid body motion is imposed on the particle boundaries only. This description
enables us to solve the same governing equations for both (fluid and particle) domains, reducing the number of
unknowns for the rigid body constraints. The governing equations for a particle domain P iðtÞ at time t are the
same as Eqs. (23)–(26) for the fluid domain. The trivial solution for the particle domain is the rigid body
motion extended to the whole particle domain, u ¼ U i þ xi � ðx� X iÞ. Note that, the rigid-ring description
is valid when inertia is negligible. If we solve a problem with inertia, rigid body constraints should be imposed
inside the particle domain as well.
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In addition to the above mentioned governing balance equations, boundary conditions, and constraints,
one needs to solve the kinematic equations for the evolution of particle positions with time t, represented by
dX i

dt
¼ U i; X ið0Þ ¼ X i;0: ð28Þ
Balance equations are needed for drag force and torque on particle boundaries in order to determine the un-
known rigid body motions ðU i;xiÞ of the particles. In the absence of inertia,
F i ¼
Z

oPþi ðtÞ
ðrþ TmÞ � ndS ¼ 0; ð29Þ

T i ¼
Z

oPþi ðtÞ
ðx� X iÞ � ððrþ TmÞ � nÞdS ¼ 0; ð30Þ
where F i is the sum of the hydrodynamic drag and magnetic force, T i the sum of the hydrodynamic torque and
magnetic torque working on a rigid particle, and n is the outward normal vector at the particle boundary.

3. Finite element formulation

3.1. Magnetostatic problem

The weak form for the Poisson equation (9) for the magnetic potential A is given as: find A 2 S such that
Z
X

1

lr

rA � rwð ÞdA ¼
Z

X
l0J dA; ð31Þ
for all w 2 S0 with S ¼ fA 2 H 1ðXÞ with A ¼ �A at Cwg and S0 ¼ fw 2 H 1ðXÞ with w ¼ 0 at Cwg. The weak
form is used to obtain an approximate solution using the Galerkin finite element method. We used bi-qua-
dratic interpolation for the magnetic potential A. The resulting matrix equation is solved using HSL/
MA57, a sparse multi-frontal Gauss elimination method to solve a symmetric matrix [22].

3.2. Flow problem

The fluid flow problem, including interactions between fluid and rigid particles, is solved by using the finite
element method and a fictitious domain method, similarly to previous work [21]. We use a fictitious domain
method to treat rigid body constraints on particle boundaries. In the derivation of the weak form, following
the approach of Glowinski et al. [14], fluid–particle interactions are implicitly treated through the combined
weak formulation where hydrodynamic force and torque on the particle boundaries are canceled exactly. Since
one can find the detailed derivation procedure in the existing literature [14,21] we present only the final weak
form without detailed derivations. In the combined weak formulation, the rigid body constraint is enforced by
the constraint equation using a Lagrange multiplier, kp;i, defined on the particle boundary oP i.

Let us first define the combined velocity and variational space for velocity, which is denoted by V:
V ¼ fðu;U i;xiÞju 2 H 1ðXÞ2;U i 2 R2;xi 2 R;

u ¼ U i þ xi � ðx� X iÞ on oP iðtÞ and u ¼ 0 on Cwg
ð32Þ
for i ¼ 1; . . . ;N . For a given particle configuration X i ði ¼ 1; . . . ;NÞ, the weak form for the entire domain X
can be stated as follows: find ðu;U i;xiÞ 2 V, p 2 L2ðXÞ, and kp;i 2 L2ðoP iðtÞÞði ¼ 1; . . . ;NÞ such that
Z

X
2gDðuÞ : DðvÞdA�

Z
X

pr � vdA ð33Þ

þ
XN

i¼1

hkp;i; v� ðV i þ vi � ðx� X iÞÞioP i
¼ �

Z
X

Tm : DðvÞdA;

Z
X

qr � udA ¼ 0; ð34Þ

hlp;iðxÞ; uðxÞ � ðU i þ xi � ðx� X iÞÞioP i
¼ 0 ði ¼ 1; . . . ;NÞ; ð35Þ
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for all ðv;V i; viÞ 2 V, q 2 L2ðXÞ, and lp;i 2 L2ðoP iðtÞÞ ði ¼ 1; . . . ;NÞ. In the weak formulations, the variables,
v;V i; vi, and q, are variations for the velocity u, the translational velocity of a particle U i, the angular velocity
of a particle xi, and the pressure p, respectively. As already mentioned, the force due to the magnetic field is
given by the divergence of the Maxwell stress tensor. In the weak formulation, however, instead of using the
divergence of the Maxwell stress tensor as it is, we applied integration by part and the Gauss’ theorem. Thus
this term is represented by the double inner product of the Maxwell stress and the rate-of-deformation tensor
(see the term in right-hand side of Eq. (33)). This form enables us to circumvent differentiation of the Maxwell
stress tensor which is discontinuous at fluid–particle interfaces.

We use bi-quadratic interpolation for the velocity and bi-linear interpolation for the pressure, the so called
Q2=Q1 element. As for the rigid body constraints, the weak form is approximated by point collocation [21].
The resulting matrix equation is solved by a sparse direct method, HSL/MA57 [22].

Particle positions are updated by integrating the evolution equations of particles, Eq. (28), using the rigid
body motions of particles obtained as a part of the solution. We employ explicit time integration schemes: the
explicit Euler method at the first time step and the second-order Adams-Bashforth method from the second
time step onwards [21].
4. Verification

In this section we verify our numerical scheme using a single-particle problem. Since there is no analytic
solution for the problem of a two-dimensional magnetic particle suspended in a fluid, we compare results
obtained from a regular mesh problem with those from the corresponding boundary-fitted mesh problem
as a reference. As will be discussed in this section, a boundary-fitted mesh results in a convergent solution with
mesh refinement, satisfying discontinuities of the pressure and the magnetic field at the fluid–particle interface.
However, the mesh must be updated with the change of particle positions, thus making it very difficult to
apply to general problems.
4.1. Test problem

The single-particle problem chosen for verification is schematically illustrated in Fig. 2. We choose a square
cavity of length L with the particle P 1 located at the center of the cavity that is influenced by the magnetic field
generated by a current-carrying wire. In the absence of the particle, in the cylindrical coordinate system with
its origin at the center of the wire, only the circumferential component of the magnetic flux density B is non-
zero, i.e., Br ¼ 0 and Bz ¼ 0. From the Biot-Savart law, the circumferential component Bh is represented as
follows [15]:
Fig. 2.
mediu
Bh ¼
lI
2pr

; ð36Þ
J
r

P1

x

y

B

L

Single-particle in a magnetic field generated by a current carrying wire. Given the current I and the magnetic permeability of the
m l, the magnetic field around the wire is given by the Biot–Savart law.
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where l is the magnetic permeability of the medium, I the current passing through the wire, and r the radial
distance from the wire to a certain spatial position. In this case, therefore, the magnetic potential A is a func-
tion of the radial coordinate r only, i.e., A ¼ AðrÞ. Then the relation between Bh and the magnetic potential A is
given by
Bh ¼ �
dA
dr
: ð37Þ
From Eqs. (36) and (37), therefore, the magnetic potential A around the wire is represented by
A ¼ � lI
2p

ln r þ A0; ð38Þ
where A0 is a constant set to be zero in this work. Eq. (38) is used to impose an essential boundary condition
for A at the cavity boundary.

Just for verification of the method, we use in the simulations the following fixed material properties: viscos-
ity g is 1, magnetic permeability of the fluid is 1 and of the particle is equal to 2, respectively. So the relative
permeability of the particle lr is 2. The particle radius a is a ¼ 0:1L with the size of the cavity L ¼ 20. In the
boundary-fitted mesh problem, as depicted in Fig. 3(a), elements are generated such that the particle boundary
coincides with internal boundaries of the elements. We use a discontinuous pressure element for the boundary
fitted problem only. The collocation points are chosen to be nodal points on the particle boundary such that
the rigid body constraint is satisfied at each node on the boundary. We performed mesh refinement to get a
convergent solution for the problem. Shown in Table 1 is the translational velocity of the particle along x-
direction, showing convergence with refinement of the boundary-fitted mesh. The results obtained from a
boundary-fitted mesh, which is five-time finer than that shown in Fig. 3(a), are used as references. We use four
regular meshes consisting of 34 � 34, 68 � 68, 102 � 102, and 136 � 136 elements, which are denoted by M1,
M2, M3, and M4, respectively. Fig. 3(b) shows the mesh M1 with 42 collocation points.
4.2. Number of collocation points

We first investigate the effect of the number of collocation points ðN cpÞ at the particle boundary to deter-
mine the proper number of collocation points which guarantees the rigid body motion of the particle in the
presence of magnetic actuation. We use mesh M3 (with 102 � 102 elements) varying the number of collocation
points. Fig. 4 shows the relative error in the translational velocity of the particle U with refinement of collo-
cation points. As reported in [21], one collocation point per element, where N cp ¼ 64 in this specific example,
seems to give the most accurate result in the sense of minimizing the error. In this plot we observe a plateau in
the error around N cp ¼ 120, above which the error begins to increase. Now let us examine the velocity field
inside the particle domain. Plotted in Fig. 5 is the x-velocity u along the line (y = 0) to check if the rigid body
motion inside the particle domain is guaranteed with one collocation point per element as well. As depicted in
Fig. 5, however, the rigid body motion within the particle domain is not satisfied at all with N cp ¼ 64, where
overshoot and undershoot in velocity are observed and the velocity within the particle domain is not uniform.
With refinement of collocation points, the velocity inside the particle becomes uniform and close to the refer-
ence solution obtained from the boundary-fitted mesh problem.

Thus, in the presence of magnetic actuation, one collocation point per element is not enough to satisfy the
rigid body constraint inside the particle. As already mentioned, the body force f m in a medium with a constant
magnetic permeability is zero. Under the influence of magnetic fields, the body force is effective near the fluid–
particle interface only, which is thought to be the reason that more collocation points per element are required
than for problems with passive rigid particles without an actuation. From Figs. 4 and 5, two collocation points
per element seems to be an optimal choice in the sense of minimizing the error in the rigid body motion of the
particle and guaranteeing a uniform velocity inside the particle, allowing us to use the rigid-ring description in
the problem with an actuation of the particle. As the number of collocation points increases to more than two
points per element, the system becomes over-constrained, which results in an increased error in the solution. In
simulations introduced hereafter, the number of collocation points per element is therefore equal to two.



Fig. 3. Meshes for the problem of a single particle (represented by black dots) in a magnetic field generated by the current-carrying wire
defined in Fig. 2. (a) A boundary-fitted mesh (Mbf1) and (b) a regular 34 � 34 mesh (M1). The coordinate of the particle center is (0, 0).

Table 1
Translational velocity Ubf of the particle (along x direction) with mesh refinement in boundary-fitted meshes

Mesh Translational velocity of the particle, Ubf

Mbf1 1.5639866 � 10�2

Mbf2 1.5640612 � 10�2

Mbf3 1.5640662 � 10�2

Mbf4 1.5640671 � 10�2

Mbf5 1.5640674 � 10�2

Here, Mbf1 represents a boundary-fitted mesh shown in Fig. 3(a), Mbf2 a refined mesh by two times, and so on.
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4.3. Convergence

Now we compare the magnetic flux density, the velocity, the pressure, and the shear rate obtained from the
boundary-fitted mesh problem with those from regular mesh problems with mesh refinement.

Fig. 6 depicts the y component of the magnetic flux density By along the line y ¼ 0. Since the tangential
component of B is discontinuous at the fluid–particle interface, By is discontinuous at x ¼ �a. Due to the dis-
continuity of permeability, we observe deviations from the reference solution at the coarse mesh M1, but the
solution converges to the reference solution with mesh refinement. The x-velocity u along the line is plotted in
Fig. 7. The coarse mesh M1 leads to an oscillatory velocity solution inside the particle with large overshoot
and undershoot near the particle boundary. With mesh refinement, the velocity becomes uniform inside the
particle and shows convergence to the result obtained from the boundary-fitted mesh. As plotted in Fig. 8,
the pressure obtained with the coarse mesh M1 seems to be very poor near the particle boundary, where pres-
sure is discontinuous across the boundary. Since the pressure inside the particle is undefined we compare the
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pressure in the fluid domain only and, with mesh refinement, the pressure here converges to the reference solu-
tion as well. Finally, we made a comparison for the generalized shear rate _c, which in principle should be zero
inside the particle. The generalized shear rate is defined as a square root of the second invariant of the rate-of-
deformation tensor D. The shear rate plotted along the line x ¼ 0 looks good outside the particle domain even
in the coarse meshes, see Fig. 9. In the coarse mesh M1, due to the oscillatory velocity solution inside the par-
ticle, the shear rate is not zero in the particle domain, but it shows convergence to zero shear rate with mesh
refinement.

5. Applications

To demonstrate the capability of the method developed, we introduce results obtained from two problems
with two and more circular magnetic particles of the same diameter 2a subjected to a uniform magnetic field
and one rotating with an angular frequency x.

5.1. Two magnetic particles in a uniform magnetic field

We first solve a problem consisting of two circular paramagnetic particles suspended in a fluid closed by a
circular cavity of radius Rc ¼ 0:5. The two particles are magnetically interacting with each other in a uniform
magnetic field externally applied (see Fig. 10). The initial distance between the two centers of the particles is 4a

with the particle radius a ¼ 0:05Rc. Flow is induced only by the motion of the particles. The motion is caused
0B

θ

P2

P1

2a
4a

x

y

Fig. 10. Interaction of two magnetic particles in a uniform magnetic field directing horizontally. The angle h is an angle formed by the
magnetic field and the line connecting the two particles. The distance between the two particles is 4a, where a is the radius of the particles
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by the magnetic interactions between the particles due the externally applied field. The actual motion is depen-
dent on the configuration of the particles.

It is well known that the force between two polarizable particles in a uniform magnetic field may be either
attractive or repulsive depending on the angle h formed between the direction of the applied field and the line
connecting the two centers of the particles. In the case of spherical particles, an analytic formula for the force
can be derived for the dipole–dipole interaction model [1]. The critical angle hc is 55� in the case of two spher-
ical particles, i.e., the force is attractive at an angle less than hc and repulsive at an angle greater than hc.

In the case of two-dimensional circular particles, however, there is no analytical formula available. The cav-
ity is discretized into 60,000 nine-node rectangular elements and the material parameters are the same as those
used in the verification introduced in Section 4. Fig. 11 depicts trajectories of the particles showing different
paths depending on the angle h. From the simulations, we find that the critical angle hc in this case is approx-
imately 45�. As shown in Fig. 11, in the end, the two particles are aligned with the applied field regardless of
the initial angle h, except for the case with h ¼ 90� at which the two particles moved away from each other. In
reality, however, the two particles having a right angle with the field will also be aligned along the field direc-
tion due to any disturbance working on the particles, for example by Brownian motion of fluid particles col-
liding with the magnetic particles. Though we solve two-dimensional problems here, we show that our scheme
can take into account magnetic interactions between the two particles coupled with hydrodynamic
interactions.
5.2. Magnetic chain in a rotating magnetic field

The second problem is a two-dimensional circular cavity flow with particles (initially forming a chain
aligned horizontally) suspended in a non-magnetic fluid in a rotating magnetic field. We here demonstrate
the capability of our scheme to solve a problem involving such topological changes as break-up and reforma-
tion of the chain, significantly influenced by a non-dimensional number, the Mason number.
5.2.1. Scaling analysis

First of all, we wish to introduce the result of scaling analysis for the governing equations for the flow with
magnetic particles, aiming to extract dimensionless parameters influencing the motion of fluid and particles.
As introduced in Section 2.3, we solve a single governing equation for both fluid and particle domains with
constraints for the rigid body motion. The fluid is assumed to be non-magnetic, so the magnetic permeability
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of the fluid domain is l0. The particle is circular with radius a and is assumed to have a constant magnetic
permeability lp which is larger than l0, i.e. lp > l0.

Non-dimensional variables (with a superscript *) are given by
Fig. 12
consist
x� ¼ x
lc

; y� ¼ y
lc

; ð39Þ

u� ¼ u

uc

; ð40Þ

p� ¼ p
pc

; ð41Þ

T �ij ¼
T ij � l0H 2

c

ðlp � l0ÞH 2
c

; ð42Þ
where lc denotes a characteristic length, uc a characteristic velocity, pc a characteristic pressure, and H c the
characteristic magnetic field intensity. Here we define the characteristic length, velocity and pressure as
lc ¼ a, uc ¼ a=tc and pc ¼ guc=a, respectively. The Maxwell stress tensor is non-dimensionalized by the stress
difference (with the reference being l0H 2

c) normalized by ðlp � l0ÞH 2
c . The characteristic time scale tc is defined

as the inverse of the angular frequency x. The magnetic flux density B0 has the form of
B0 ¼ B0ðcosðxtÞex þ sinðxtÞeyÞ: ð43Þ

The characteristic magnetic field intensity is defined as H c ¼ H 0 ¼ B0=l0. Then, the resulting non-dimensional
momentum equation for the Stokes flow is
r�p� � r�2u� ¼ 1

Ma
r� � T�; ð44Þ
where Ma is the Mason number, which is the ratio of the viscous force to the magnetic force under the influ-
ence of a rotating magnetic field, defined by
Ma ¼ gx

l0vpH 2
0

; ð45Þ
with vp being the magnetic susceptibility of the particle, defined by vp ¼ lp=l0 � 1. In Eq. (45), the Mason
number may also be interpreted as the ratio of the time scale of magnetic particle motion,
tm ¼ g=ðl0vpH 2

0Þ, to the flow time scale tc. The time scale tm is related to the time required for a magnetic par-
ticle to travel the order of its size given the field intensity H 0 and surrounding fluid with the viscosity g. With
all the other parameters, such as the ratio of particle size to cavity size a=Rc, the susceptibility vp, and the par-
ticle area fraction /a, being fixed, the Mason number is the only parameter influencing the dynamics of the
chain and the flow in the cavity in a rotating magnetic field.
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. Schematic representation of a magnetic chain in a circular cavity under the influence of a rotating magnetic field. A chain
ing of N magnetic particles is horizontally aligned initially.
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Fig. 13. Evolution of the particle position (X, Y) of the first particle at the four Mason numbers: (a) Ma = 0.0005; (b) Ma = 0.002; (c)
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5.2.2. Chain motion and flow characteristics

We carry out simulations at four Mason numbers, Ma = 0.0005, 0.002, 0.005, and 0.01, attempting to
investigate the dynamics of a magnetic chain and flow characteristics as significantly influenced by Mason
numbers in this range. In the simulations, we fix the ratio of particle to cavity radius to be a=Rc ¼ 0:05, so
the area fraction of the particles equals /a ¼ 0:0425 when the number of particles N = 17 (see Fig. 12 for
the definition of the particle). The cavity is discretized into 14,400 nine-node rectangular elements. The time
step used is 0.02 in non-dimensional units. There are approximately eight elements along the particle diameter.

Fig. 13 plots the evolution of the particle position (X, Y) of the first particle P 1 initially located at (0.1, 0.5).
As expected from the trajectory depicted in Fig. 13(a), at the low Mason number Ma = 0.0005 the chain
rotates almost like a rigid chain following the rotating magnetic field of the angular frequency x, but the chain
lags behind the field. Chain break-up is observed at the two intermediate Mason numbers, Ma = 0.002 and
0.005. In the first case, the chain is splitted into two chains, recombining later to form a single chain again,
which takes place in an alternating manner. The two flow portraits (see the streamlines depicted in Fig. 14)
induced by the two alternating typical motions of the chain(s), which may be regarded as two stirrers, are
thought to be a useful means for enhanced mixing [9], requiring further investigations. Deformation patterns
shown in Fig. 14 clearly show the detailed shape of the chain at the moment of break-up and reformation.
Especially the shape of the chain at break-up, which looks like a reversed S-like structure, is quite similar
to the theoretical prediction based on the dipole–dipole interaction model and the experimentally observed
one by Melle et al. [11,12]. In the second case, however, the chain is splitted into three chains, which remain
as separate chains without joining together. At a higher Mason number, Ma = 0.01, the chain rotates counter-
clock wise in overall sense, but with a oscillatory motion moving forward and backward. At an even higher
Mason number, Ma = 0.1, we observe that the chain no longer follows the field and remains at its initial loca-
tion with a small oscillatory motion.
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Fig. 14. Streamlines and chain configurations at the moment of chain break-up (left) and reformation (right) at Ma = 0.002. The arrow
indicates the direction of the magnetic field at a non-dimensional time t*.
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6. Conclusion

A new direct numerical simulation method for flows with suspended paramagnetic particles has been
developed. The method takes into account both hydrodynamic and magnetic interactions in a fully coupled
manner. The magnetic forces acting on the particles are implemented via the Maxwell stress tensor. For
the 2D problems investigated, the rigid-ring description turns out to be valid in the presence of actuation
of the particles, but requires two times more collocation points on the particle boundary compared with
the original description by Hwang et al. [21] where there is no actuation. The numerical scheme was verified
with the problem of a single suspended particle in a stationary magnetic field generated by a current-carrying
wire. Compared with results from a boundary-fitted mesh problem as a reference, the present scheme shows
convergence to the reference solutions with mesh refinement. We have solved two problems containing more
than one particle to demonstrate the feasibility of applying the method developed to practically relevant prob-
lems. In the first problem, two interacting magnetic particles move in a uniform field. We find the critical angle
between the field and the line connecting the two particles to be approximately 45� in the case of two-dimen-
sional circular particles, which determines the nature of interaction force to be either attractive or repulsive.
The second problem concerns the motion of a chain formed by multiple particles, under the influence of a
rotating field. The nature of deformation of the chain is dependent on the Mason number, the ratio of the
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viscous force to the magnetic force. Chain break-up occurs within a certain range of Mason numbers. The
deformation of the chain at break-up shows good agreement with previous work, deforming to a reverse S-
like structure just before break-up and splitting into two chains. Since this scheme is a general direct method
it can be extended to complicated magnetically non-linear materials, computationally intensive problems in
three dimensions, and to viscoelastic fluids with suspended magnetic particles.
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